QFT I exercises - sheet 4

Solutions to Dirac

Consider
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a Under which condition are 1)*(p) a solution to the Dirac equation?
Tip: if all else fails, first go to the rest frame.

b Verify in the rest frame that the index on £ corresponds to eigenvalues
of the last component of the Pauli-Lubanski vector, W3 and identify
the quantum number.

For the spinors u(p) v(p) a normalisation N exits for which
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¢ Find the normalisation and prove the equations.

d Show that for this normalisation ) w"a" = ~,p* + m as well as
>, 0" = ,p* —m hold.

e Show the Gordon-identity
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where (yp, —m)u(p) = 0 = a(p')(y"p), —m) and J§ = [y, "]



Quantization: right and wrong

Someone writes a Dirac field in the Heisenberg picture as
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a What is missing? Hint: it is almost trivial...

b Write the natural expansion for v

¢ Derive the Hamilton and spatial momentum classical Noether charges
from the Dirac Lagrangian.

d Show the classical Noether charge for the free Dirac Lagrangian for
the symmetry 1 — €% is Q = [ d3zypiep

Consider quantisation by promoting a and b to operators which obey [a;;7 a;ilT] =
8" (2m)36°(p — ')

e Derive the Hamilton operator using these relations.

f Repeat e), but now for anti-commutation relations

g Repeat f) for the spatial momentum operator, P*.

h Compute the operator corresponding to the charge in d) in the quan-
tum theory using anti-commutation relations

i When is ¢ — €7 a symmetry of the Dirac Lagrangian?



