QFT I exercises - sheet 4

Solutions to Dirac

Consider

$$
\begin{align*}
& \psi^{+}=u^{s}(p) e^{-\mathrm{i} p \cdot x} \quad \text { with } \quad u^{s}(p)=\frac{1}{N}\binom{(p \cdot \sigma+m) \xi^{s}}{(p \cdot \bar{\sigma}+m) \xi^{s}} \tag{1}\\
& \psi^{-}=v^{s}(p) e^{\mathrm{i} p \cdot x} \quad \text { with } \quad v^{s}(p)=\frac{1}{N}\binom{(p \cdot \sigma+m) \xi^{s}}{-(p \cdot \bar{\sigma}+m) \xi^{s}} \tag{2}
\end{align*}
$$

with

$$
\begin{equation*}
\xi^{1}=\binom{1}{0} \quad \xi^{2}=\binom{0}{1} \tag{3}
\end{equation*}
$$

a Under which condition are $\psi^{ \pm}(p)$ a solution to the Dirac equation? Tip: if all else fails, first go to the rest frame.
b Verify in the rest frame that the index on ξ corresponds to eigenvalues of the last component of the Pauli-Lubanski vector, \hat{W}^{3} and identify the quantum number.

For the spinors $u(p) v(p)$ a normalisation N exits for which

$$
\begin{align*}
\bar{u}^{s} u^{r} & =2 m \delta^{r s} \quad \bar{v}^{s} v^{r}=-2 m \delta^{r s} \quad \bar{u}^{s} v^{r}=0=\bar{v}^{s} u^{r} \tag{4}\\
\left(u^{s}\right)^{\dagger} u^{r} & =2 p^{0} \delta^{r s} \quad\left(v^{s}\right)^{\dagger} v^{r}=2 p^{0} \delta^{r s} \tag{5}
\end{align*}
$$

c Find the normalisation and prove the equations.
d Show that for this normalisation $\sum_{r} u^{r} \bar{u}^{r}=\gamma_{\mu} p^{\mu}+m$ as well as $\sum_{r} v^{r} \bar{v}^{r}=\gamma_{\mu} p^{\mu}-m$ hold.
e Show the Gordon-identity

$$
\begin{equation*}
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\frac{1}{2 m} \bar{u}\left(p^{\prime}\right)\left(p^{\prime \mu}+p^{\mu}+2 \mathrm{i} J_{S}^{\mu \nu}\left(p^{\prime}-p\right)_{\nu}\right) u(p) \tag{6}
\end{equation*}
$$

where $\left(\gamma^{\mu} p_{\mu}-m\right) u(p)=0=\bar{u}\left(p^{\prime}\right)\left(\gamma^{\mu} p_{\mu}^{\prime}-m\right)$ and $J_{S}^{\mu \nu}=\frac{\mathrm{i}}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$

Quantization: right and wrong

Someone writes a Dirac field in the Heisenberg picture as

$$
\begin{equation*}
\psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(a_{\vec{p}}^{s} u^{s} e^{-\mathrm{i} p \cdot x}+b^{\dagger}{ }_{\vec{p}} v^{s} e^{\mathrm{i} p \cdot x}\right) \tag{7}
\end{equation*}
$$

a What is missing? Hint: it is almost trivial...
b Write the natural expansion for $\bar{\psi}$
c Derive the Hamilton and spatial momentum classical Noether charges from the Dirac Lagrangian.
d Show the classical Noether charge for the free Dirac Lagrangian for the symmetry $\psi \rightarrow e^{\mathrm{i} \alpha} \psi$ is $Q=\int d^{3} x \psi^{\dagger} \psi$

Consider quantisation by promoting a and b to operators which obey $\left[a_{\vec{p}}^{r}, a_{\overrightarrow{p^{\prime}}}^{s, \dagger}\right]=$ $\delta^{r s}(2 \pi)^{3} \delta^{3}\left(p-p^{\prime}\right)$
e Derive the Hamilton operator using these relations.
f Repeat e), but now for anti-commutation relations
g Repeat f) for the spatial momentum operator, P^{i}.
h Compute the operator corresponding to the charge in d) in the quantum theory using anti-commutation relations
i When is $\psi \rightarrow e^{\mathrm{i} \alpha \gamma_{5}} \psi$ a symmetry of the Dirac Lagrangian?

